Impressum

Hybride Antriebsstrukturen flexibler mechanischer Pressen

Autor:

Jens Ullrich

Wichtiger Hinweis:

Das Werk, einschließlich aller seiner Teile, ist urheberrechtlich geschützt.

Jede Verwertung außerhalb der engen Grenzen des Urheberrechtgesetzes ist ohne
Zustimmung des Verlages unzulässig und strafbar. Das gilt insbesondere für
Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und
Verarbeitung in elektronischen Systemen.

1. Auflage

© 2000 Verlag Wissenschaftliche Scripten

Thurmer Straße 30, 08066 Zwickau Tel.: 03 75/44 59-0

Fax: 03 75/44 59-4

E-mail: Wiss.Scripten@t-online.de

ISBN: 3-928921-63-0

Bibliographische Beschreibung

Ullrich, Jens:

Hybride Antriebsstrukturen flexibler mechanischer Pressen

Dissertation an der Fakultät für Maschinenbau und Verfahrenstechnik der Technischen Universität Chemnitz, 2000

Seitenzahl: 169
Anzahl der Abbildungen: 105
Anzahl der Tabellen: 10
Anzahl der Literaturzitate/Ouellenverweise: 75

Referat:

Untersuchungen zeigen Möglichkeiten, die starre Weggebundenheit mechanischer Pressen über den Antrieb dahingehend zu flexibilisieren, dass eine Anpassung der Kurbelwellendrehzahl innerhalb eines Hubes erreicht wird. Beschrieben sind Antriebsvorrichtungen für den Pressenstößel einer Umformpresse mit einem Hauptantrieb sowie Zusatzantrieben zur Variation einer Geschwindigkeitscharakteristik des Pressenstößels in Abhängigkeit vom Kurbelwinkel des Hauptantriebes. Dabei wird der ersten Antriebsenergie aus einem Hauptantrieb eine zweite Antriebsenergie aus einem Zusatzantrieb überlagert und der Pressenstößel mit einer resultierenden Geschwindigkeit angetrieben. Somit wird für eine positive Beschleunigung des Pressenstößels Energie entnommen und für eine negative Beschleunigung des Pressenstößels Energie in den Energiespeicher zurückgegeben, wobei die Zeitpunkte für Beginn und Ende von positiver und negativer Beschleunigung über den Kurbelwinkel des Antriebs des Pressenstößels frei wählbar sind.

Schlagworte:

Mechanische Pressen, Umlaufrädergetriebe, Zusatzantrieb, hybrider Antrieb, Kupplungs-Brems-Kombination, hydraulischer Antrieb, elektrischer Servoantrieb

Dissertation J. Ullrich 7

Inhaltsverzeichnis

1	Einleitung	11
2	Pressenhauptantriebe	13
2.1	Technologische Anforderungen an die Kinematik	13
2.2	Hauptantriebe	16
2.2.1 2.2.2 2.2.3	Hydraulische Pressenhauptantriebe	17
2.3 2.4	Beeinflussungsmöglichkeiten der Stößelkinematik	
	Einrichtungen zurBewegungsmodifikation	20
3 Zie	lstellung	29
4 Um	ılaufrädergetriebe – Basis der Bewegungsmanipulation	33
4.1	Analyse bestehender Umlaufrädergetriebe zur Verwendung als Pressengetriebe	33
4.1.1	Anordnung im Pressenantrieb	
4.1.2	Arten und Bauformen von Umlaufrädergetrieben	
4.1.3	Bestimmung des optimalen Umlaufrädergetriebes	40
4.1.4	Unmodifizierte Standard-Maschine als Basismodell	60
4.2	Antriebshybride auf der Basis von Umlaufrädergetrieben	69
4.2.1	Mechanische Variationseinrichtung - Kupplungs-	
	Brems-Kombination als Variator	
4.2.1.1	Wirkprinzip, Aufbau und Simulationsmodell	
4.2.1.2	- /	
4.2.1.3	Möglichkeiten der Optimierung	76
4.2.2 H	Hydraulische Variationseinrichtung - Hydraulik-Motor als Variator	84
4.2.2.1	Wirkprinzip, Aufbau und Simulationsmodell	85
4.2.2.2	,	
4.2.2.3	Möglichkeiten der Optimierung	89

4.2.3	Elektrischer Servoantrieb als Zweitantrieb	95
4.2.3.1	Wirkprinzip, Aufbau und Simulationsmodell	95
4.2.3.2	Dynamisches Verhalten und Effekte	100
4.2.3.3	Möglichkeiten der Optimierung	105
5	Vergleichende Betrachtung der hybriden Antriebsstru	ıkturen -
	Auswahl der Bestlösung	
5.1	Betrachtung - Produktivität	111
5.2	Betrachtung - Flexibilität	114
5.3	Betrachtung - Energieeinsatz	115
5.4	Betrachtung - Anschaffungskosten	117
5.5	Zusammenfassung	118
6	Entwicklung eines Gesamtkonzeptes auf der Basis eines Zweitantriebes mit Umlaufrädergetriebe und elektrischem Servomotor	121
6.1	Konzept Grundmaschine mit elektrischem Servomotor als Zweitantrieb am Beispiel einer Presse mit 5000 kN Preßkraft	121
6.2	Dynamisches Verhalten und Effekte	127
6.3	Konstruktive Umsetzung der Antriebslösung	134
6.4	Maschinenkonzept mit Handlingstechnik	136
6.5	Steuerung	141
7	Zusammenfassung und Ausblick	145
8	Literaturverzeichnis	151
Anlage	en	156