Bibliographische Beschreibung

Voll, Martin

Modelle zur thermischen Optimierung von Trockenschleifprozessen

Dissertation an der Fakultät für Maschinenbau und Verfahrenstechnik der Technischen Universität Chemnitz, Institut für Werkzeugmaschinen, Chemnitz, 2000

Seiten 244
Abbildungen 100
Tabellen 49
Literaturquellen 100

Referat

Die negativen Einflüsse des Kühlschmierstoffs auf Bedienergesundheit und Umwelt machen auch beim Schleifen eine Trockenbearbeitung, wie sie bei den Zerspanungsverfahren mit geometrisch bestimmter Schneide vielfach üblich ist, wünschenswert. Der im Vergleich höhere spezifische Energiebedarf des Schleifens führt aber bei Trockenbearbeitung zu einem höheren Wärmeeintrag in das Werkstück und damit zu einer höheren Gefahr von Beeinträchtigungen der Werkstückqualität durch unzulässige Erwärmung.

Im Rahmen dieser Arbeit wird auf der Basis einer Grundlagenuntersuchung zum Schleifen mit keramisch gebundenen Korundschleifkörpern ohne Kühlschmierstoff eine Modellierung der Temperaturfelder im Werkstück in Abhängigkeit von Einstellparametern, Schleifkörperspezifikation und Werkstückeigenschaften durchgeführt. Aus den ermittelten Zusammenhängen werden Strategien zur thermisch optimierten Prozessauslegung unter Vermeidung thermisch induzierter Beeinflussungen der Werkstückqualität wie Gefügeveränderungen, Eigenspannungen und Durchmesserabweichungen abgeleitet. Den Abschluss bilden Hinweise auf mögliche Anwendungsbereiche des Trockenschleifens.

Schlagworte

Trockenschleifen, Modellierung, Temperaturfelder, Eigenspannungen, Gefügebeeinflussung, Durchmesserabweichung, Bearbeitungsstrategie, Schleifkörperoptimierung

Dissertation M. Voll 5

Inhaltsverzeichnis

1	Einleitung	9
2	Stand der Technik	11
2.1	Funktionen des Kühlschmierstoffs beim Schleifen	11
2.2	Trockenbearbeitung beim Schleifen	12
2.3	Handlungsbedarf	13
3	Zielstellung	15
3.1	Ziel der Arbeit	15
3.2	Vorgehensweise	16
4	Wirkzusammenhänge im Schleifprozess	19
4.1	Mechanismus der Spanbildung	19
4.1.1	Spanbildung am Einzelkorn	19
4.1.2	Energieverteilung an der Eingriffsstelle	21
4.1.3	Eingriff aufeinanderfolgender Schneiden	22
4.2	Thermische Beeinflussung der Werkstückqualität	23
4.2.1	Maß- und Formabweichungen	23
4.2.2	Oberflächenqualität	27
4.2.3	Entstehung von Eigenspannungen	28
4.2.4	Gefügebeeinflussung durch Werkstückerwärmung	35
4.3	Hypothesen zur thermisch günstigen Prozessgestaltung	38
4.3.1	Einfluss der Einstellparameter	38
4.3.2	Forderungen an die Schleifkörperspezifikation	
4.3.3	Einfluss der Werkstückeigenschaften	41

5	Experimentelle Untersuchungen	43
5.1	Durchgeführte Versuche	43
5.1.1	Allgemeiner Versuchsablauf	43
5.1.2	Versuchsaufbau	44
5.1.2.1	Versuchsmaschine	44
5.1.2.2	Messeinrichtungen	45
5.1.3	Versuchsplan	47
5.1.3.1	Systematische Variation der Einstellparameter	47
5.1.3.2	Statistische Versuchsplanung	
5.1.3.3	Variation der Schleifkörperspezifikation	
5.1.3.4	Variation der Werkstückeigenschaften	50
5.1.4	Versuchsauswertung	51
5.2	Interpretation der Versuchsergebnisse	51
5.2.1	Modellbildung	51
5.2.1.1	Logarithmische Modelle mit linearen Argumenten	51
5.2.1.2	Logarithmische Modelle mit quadrierten	
	Eingangsgrößen	53
5.2.1.3	Logarithmische Modelle mit kombinierten	
	Eingangsgrößen	54
5.2.2	Modellierung des Prozessverhaltens einzelner Schleifkörper	54
5.2.2.1	Spezifische Wirkleistung	55
5.2.2.2	Kontaktleistung	57
5.2.2.3	Spezifische Schleifenergie	
5.2.2.4	Temperaturanstieg	
5.2.2.5	Oberflächenrauheit R _a	62
5.2.2.6	Bewertung der Hypothesen zum Einfluss der	
	Einstellparameter	
5.2.3	Einfluss der Schleifkörperspezifikation	65
5.2.3.1	Physikalische Beschreibung der	
	Schleifkörpereigenschaften	65
5.2.3.2	Modelle zur Beschreibung des	
	Schleifkörperverhaltens	71
5.2.3.3	Bewertung der Hypothesen zum Einfluss der	
	Schleifkörperspezifikation	
5.2.4	Einfluss des Werkstückwerkstoffs	82

Dissertation M. Voll 7

6	Berechnung des Temperaturfelds im Werkstück	83
6.1	Modelle zur Ermittlung der Temperaturverteilung im Werkstück	83
6.1.1	Grundlegende Annahmen	
6.1.2	Temperaturfeld um bewegte linienförmige Wärmequelle	86
6.1.3	Lokales Temperaturfeld an der Eingriffsstelle	
6.1.4	Erwärmung im Gesamtwerkstück	94
6.1.5	Berechnung des Wärmeverteilungsfaktors "k"	102
6.1.6	Temperaturverläufe im Werkstück	104
6.1.6.1	Maximale Temperaturen in der Nähe der Eingriffsstelle	104
6.1.6.2	Zeitlicher Temperaturverlauf an der Eingriffsstelle	
6.1.6.3	Temperaturgradient in Werkstücktiefenrichtung	108
6.1.6.4	Im Werkstück verbleibende Wärmemenge	109
6.2	Einfluss der Schnittbedingungen auf die Temperaturen im Werkstück	110
6.2.1	Wärmeverteilungsfaktor und Wärmeübergangsleistung	
6.2.2	Temperaturverlauf in Werkstücktiefenrichtung	
6.2.3	Berechnung qualitätskritischer Temperaturkenngrößen	121
6.2.3.1	Gefügebeeinflussung	121
6.2.3.2	Wärmespannungen	123
6.2.3.3	Energieeintrag in das Werkstück	
6.2.3.4	Maßänderung durch Erwärmung	134
7	Thermisch optimierte Prozessauslegung	137
7.1	Ermittlung thermisch optimaler Einstellparameter	137
7.1.1	Minimale Werkstückschädigung bei festem Zeitspanvolumer	า138
7.1.2	Einstufige Bearbeitung	144
7.1.2.1	Einhaltung einer zulässigen Gefügebeeinflussung	145
7.1.2.2	Einhaltung einer zulässigen Eindringtiefe für	
	Eigenspannungen	
7.1.2.3	Einhaltung einer zulässigen Maßabweichung	
7.1.2.4	Parameterwahl bei einstufiger Bearbeitung	171

7.1.3	Mehrstufige Bearbeitung	173
7.1.3.1	Qualitätsparameter	174
7.1.3.2	Kriterien zur Optimierung der Bearbeitungsparan	neter176
7.1.4	Gültigkeit der getroffenen Modellvorstellungen	179
7.2	Ableitung erforderlicher Schleifkörpereigenschaften	180
7.3	Anwendungsbereiche des Trockenschleifens	182
8	Zusammenfassung und Ausblick	185
Α	Versuchsergebnisse	187
A.1 A.2	Versuchsdaten Ergebnisse Modellierung	
В	Temperaturfelder	209
С	Verzeichnis der Formelzeichen	215
	Exponentialgleichungen – Indexsystematik	218
	Grundsätzliche Gleichungsform Exponentialgleichung	
D	Abbildungsverzeichnis	225
E	Tabellenverzeichnis	232
F	Literaturverzeichnis	235
	Tabellarischer Lebenslauf	244