Bibliografische Beschreibung

Bahn, Volker

Thema

Implementierung der Mehrpunkt-Technologie in den Innenhochdruck-Blechumformprozess (IHB)

Dissertation an der Fakultät für Maschinenbau der Technischen Universität Chemnitz, Institut für Werkzeugmaschinen und Produktionsprozesse

173 Seiten

113 Abbildungen

5 Tabellen

95 Literaturzitate

2 Anlagen

Referat

Mit Hilfe von wirkmedienbasierten Umformverfahren lassen sich im Vergleich zu konventionellen Umformverfahren Vorteile durch das Erweitern von Verfahrensgrenzen bei der Herstellung von großflächigen Bauteilen herausarbeiten.

Wichtig für die Nutzung der wirkmedienbasierenden Verfahren, wie die Innenhochdruck-Blechumformung, ist eine prozessangepasste Dichtheit des Werkzeugsystems, die während des gesamten Umformvorganges aufrecht erhalten werden muss, um einen Anstig des Innendruckes aber auch den partiell beeinflussten Werkstofffluss zu gewährleisten. Der hierfür gewählte Ansatz besteht in der Anwendung der Mehrpunkt-Technologie.

Um diese Ziele zu erreichen wurden basierend auf wissenschaftlich theoretischen und experimentellen Grundlagenuntersuchungen, die Füll- und Vorformphase analysiert und modellhaft beschrieben.

Durch Untersuchungen von mehreren Konzepten für eine Realisierung dieser Mehrpunkt-Technologie in einem Unformwerkzeug, konnte eine Variante selektiert werden, die den Anforderungen dieser Technik in Verbindung mit der eingesetzten Innenhochdruck-Anlage erfüllt. Anhand dieses Konzeptes wurde die Wirkung der Technik des partiellen Aufbringens von Kräften auf den Niederhalter nachgewiesen. Durch Untersuchungen der verschiedenen Konzepte wurde die Notwendigkeit der Trennung von Dichten und Werkstofffluss herausgestellt. Das Dichten wurde ausschließlich der Stößelkraft zugeordnet und die Beeinflussung des Werkstoffflusses wird über separat ansteuerbare Pinolen übernommen. Für diesen Zweck kamen die in der IHU-Anlage befindlichen Tischkissenpinolen zu Einsatz. Mit diesen Pinolen wurde es möglich den Flanschbereich des herzustellenden Bauteils mit unterschiedlichen Flächenpressungen zu beaufschlagen. Die Höhe der örtlichen Flächenpressung wird durch die bauteilspezifische Form vorgegeben.

Schlagworte

Mehrpunkt-Technologie, Stößelkraft, Füllphase, Werkzeugkonzept, elastischer Niederhalter, Tischkissenpinolen, Innenhochdruck-Blechumformung, wirkmedienbasierte Umformung, prozessangepasste Dichtheit, Hydroforming

Inhaltsverzeichnis

1	Einleitung	15
2	Darstellung des Standes der Erkenntnisse	19
2.1	Umformung mit flüssigen Medien	19
2.1.	1 Begriffsbestimmung	19
2.1.	2 Verfahrensvarianten	19
2.1.	2.1 Hydro-Umformung von Rohren und Profilen	19
2.1.	2.2 Hydro-Umformung von Blechen	23
2.1.	Wersagensfälle des Hydro-Blechumformens	33
2.2	Beeinflusster Werkstofffluss während der Umformung	38
2.2.	1 Einsatz der Mehrpunktziehtechnik im konventionellen Tiefziehprozess	38
2.2.	Tiefziehen mit hydroelastischem Niederhalter	44
2.2.	Aktiv-elastisches Werkzeugsystem (AEW) zur Innenhochdruck-Umformung von unverschweißten Blechen	45
2.2.	•	47
3	Zielsetzung und Aufgabenstellung	51
4	Vergleich des Tiefziehens und des IHB-Verfahrens anhand der Umformkräfte	53
4.1	Relevante Umformbereiche am Bauteil	53
4.2	Berechnung der Ziehkraft	54
4.3	Berechnung der Biegekraft nach Mäde	60
4.4	Berechnung der Stempelkräfte F_{St} und $F_{St/IHB}$	61
4.5	Zusammenfassung	62

5	Analytische Betrachtungen der Vorgänge und Abläufe bei d Hydro-Blechumformung	der 65
5.1	Beschreibung der Füllphase des IHB-Prozesses	65
5.2	Druckaufbau und Leckage	66
6	Konzeption des Versuchsaufbaus	75
6.1	Maschinentechnische Versuchseinrichtung	75
6.2	Betrachtungen zum Wirkbereich der Pinolen	76
6.3	Festlegung Werkzeuggeometrie	77
6.4	Entwicklung der Werkzeugkonzepte	82
6.4.	1 Variante I	82
6.4.2	2 Variante II	88
6.4.3	Leckagestrom bei Durchbiegung des Niederhalters	90
6.5	Werkzeugkonstruktion	98
7	Simulationsmodell IHB-Mehrpunkttechnik	101
8	Validierung der theoretischen Untersuchungsergebnisse	109
8.1	Versuche zum Einlaufverhalten beim Behälterwerkzeug	109
8.1.	1 Simulation der Behältergravur	111
8.1.2	Vorversuche mit nicht eingearbeitetem Werkzeug	116
8.1.3	Wersuche zur Behältergravur	120
8.1.4	3 9	129
8.2	Versuche zum Einlaufverhalten beim B-Säulenfuß-Werkzeug	133
8.2.		137
8.2.2	3	142
8.2.3	3 Versuchsauswertung B-Säulenfußgravur	150
9	Zusammenfassung und Ausblick	155
Literaturverzeichnis		159
Anhang		169