Bibliografische Beschreibung

Baumgart, Rico

Thema: Reduzierung des Kraftstoffverbrauches durch

Optimierung von Pkw-Klimaanlagen

Dissertation an der Fakultät für Maschinenbau der Technischen Universität Chemnitz, Institut für Konstruktions- und Antriebstechnik, Professur Maschinenelemente, Chemnitz, 04.06.2010

Seitenzahl: 231

Anzahl der Abbildungen: 117 Anzahl der Tabellen: 19

Anzahl der Literaturzitate: 57

Referat:

Die Mehrheit der heutigen Automobile ist bereits serienmäßig mit einer Klimaanlage ausgestattet. Allerdings führt deren Benutzung mitunter zu einem erheblichen Kraftstoffmehrverbrauch und damit auch zu einer zusätzlichen CO₂-Emission.

In der vorliegenden Arbeit wird zunächst ein geometrie- und prozessbasiertes Simulationsmodell hergeleitet, welches die gesamte Klimaanlage einschließlich der Fahrgastzelle abbildet. Anschließend werden mit Hilfe dieses Simulationsmodells verschiedene Optimierungsansätze hinsichtlich der erreichbaren Kraftstoff- und CO₂-Einsparungen untersucht.

In den bisherigen Publikationen zu dieser Thematik werden oftmals nur hochsommerliche Umgebungsbedingungen betrachtet. Allerdings wird die Klimaanlage auch in den kälteren Jahreszeiten genutzt, um ein Beschlagen der Scheiben zu vermeiden. Daher sind, wie in dieser Arbeit gezeigt wird, zur Bewertung der einzelnen Modifikationen auch stets die Kraftstoffeinsparungen heranzuziehen, die innerhalb eines gesamten Jahres erreicht werden können.

Die Ergebnisse dieser Arbeit machen deutlich, dass sich mit verschiedenen Maßnahmen der Kraftstoffverbrauch teilweise beträchtlich reduzieren lässt und somit ein wesentlicher Beitrag zur Steigerung der Umweltverträglichkeit zukünftiger Fahrzeuge geleistet werden kann.

Schlagworte:

Pkw-Klimaanlagen, Kraftstoffverbrauchssenkung, Optimierung von Klimaanlagen, Simulation von Klimaanlagen, Reduzierung des CO₂-Ausstoßes

<u>Inhaltsverzeichnis</u> XI

Inhaltsverzeichnis

Formelzeichen und Abkürzungen	XV
1 Einleitung	1
1.1 Aufbau und Funktionsweise einer Pkw-Klimaanlage	
1.1.1 Kältekreisprozess	
1.1.2 Kältemittelverdichter	3
1.1.3 Kondensator	5
1.1.4 Verdampfer	6
1.1.5 Thermostatisches Expansionsventil	6
1.1.6 Kältemittel	8
1.1.7 Klimagerät	8
1.2 Stand der Technik.	9
1.3 Ziele und Aufbau der Arbeit	12
2 Simulationsmodell für den Kältemittelverdichter	15
2.1 Kinematische Grundlagen	15
2.2 Beschreibung des dynamischen Ventilverhaltens	19
2.2.1 Dämpfungskraft	21
2.2.2 Federkraft	23
2.2.2.1 Federkraft am Auslassventil	24
2.2.2.2 Federkraft am Einlassventil	29
2.2.3 Massenträgheitskraft	32
2.2.4 Druckkraft	35
2.2.5 Bewegungsgleichungen der Ventile	40
2.3 Beschreibung der Massenströme an den Ventilen	41
2.4 Beschreibung der thermodynamischen Vorgänge im Zylinder	44
2.5 Verdichtersimulation	48
2.6 Leistungen im Verdichter	52
2.6.1 Verlustleistungen und indizierte Leistung am Kolben	52
2.6.2 Verlustleistung an der Schwenkscheibe und Bestimmung des Kurbel	lgehäuse-
druckes	61
2.6.3 Verlustleistungen an der Antriebswelle	66
2.6.4 Verlust- und Antriebsleistung des Verdichters	69
2.7 Kältemittelmassenströme im Verdichter	70
2.8 Druck und Temperatur am Ein- und Ausgang des Verdichters	72
2.9 Verdichterwirkungsgrade und Optimierungspotentiale	78
2.10 Vergleich von Simulations- und Messergebnissen	84

XII Inhaltsverzeichnis

3 Simulationsmodell für die Wärmeübertrager	87
3.1 Grundlagen des Modells	87
3.2 Äußerer Wärmeübergangskoeffizient	89
3.3 Energiebilanzen für die Wärmeübertragerelemente	92
3.3.1 Massenstrom \dot{m}_L^i und Wassergehalt $x_{L,aus}^i$ der Luft	93
3.3.2 Enthalpien $h_{R,ein}^{i}$ und $h_{R,aus}^{i}$ des Kältemittels	95
3.4 Simulation der Wärmeübertrager	96
3.5 Simulationsergebnisse	97
4 Simulationsmodell für das Expansionsventil	101
5 Simulationsmodell für die Fahrgastzelle	107
5.1 Grundlagen des Modells	108
5.2 Wärmeübertragung durch langwellige Strahlung	
5.2.1 Diskretisierung der Flächen	111
5.2.2 Numerische Bestimmung der Einstrahlzahlen	113
5.2.3 Berechnung der Strahlungswärmeströme	118
5.3 Sonnenstrahlung	120
5.3.1 Direkte Bestrahlung einer geneigten Fläche	120
5.3.2 Diffuse Bestrahlung einer geneigten Fläche	125
5.3.3 Reflektierte Strahlung von der Fahrbahn	123
5.3.4 Bestrahlung des Fahrzeuges	127
5.4 Wärmeübertragung durch Konvektion	128
5.4.1 Nußeltzahl bei erzwungener Konvektion	128
5.4.2 Nußeltzahl bei freier Konvektion	129
5.4.2.1 Geneigte und vertikale Flächen	131
5.4.2.2 Horizontale Flächen	132
5.4.3 Wärmeübergangszahl am Fahrer	133
5.4.4 Berechnung der konvektiven Wärmeströme	133
5.5 Atmung und Transpiration des Fahrzeuginsassen	135
5.6 Gleichungen zur Beschreibung des Klimas in der Fahrgastzelle	138
5.6.1 Zeitliche Änderung der Wasserdampfmasse in der Fahrgastzelle	138
5.6.2 Zeitliche Änderung der Temperatur in den Luftzonen	139
5.6.3 Zeitliche Änderung der Bauteiltemperaturen	142
5.7 Simulation des Klimas in der Fahrgastzelle	143
5.8 Vergleich von Simulations- und Messergebnissen	143
6 Simulation der gesamten Klimaanlage	149
6.1 Simulation des Kältekreisprozesses	149

Inhaltsverzeichnis	XIII

6.2 Fahrzyklen und Umgebungsbedingungen	154
6.3 Behaglichkeitszustand in der Fahrgastzelle	158
6.4 Simulation der Klimaanlage	
7 Betriebsverhalten und Kraftstoffmehrverbrauch einer Pkw-Klimaanlage	161
8 Reduzierung des Kraftstoffverbrauches durch Optimierung der Klimaanlage	171
8.1 Erhöhung der maximalen Luftaustrittstemperatur am Verdampfer	171
8.2 Unterbindung des Regelmassenstromes	174
8.3 Einsatz einer Riemenscheibe mit integrierter Magnetkupplung	175
8.4 Einsatz eines kleineren Verdichters mit geringerem maximalen Hubvolumen	177
8.5 Einsatz eines Zweigang-Riemenscheibengetriebes	180
8.5.1 Riemenscheibengetriebe mit Übersetzung ins Schnelle	180
8.5.2 Riemenscheibengetriebe mit Übersetzung ins Langsame	185
8.6 Stufenloser Antrieb eines Verdichters mit festem Hubvolumen	189
8.7 Zusammenfassung der Ergebnisse	193
8.8 Einsparpotentiale im Neuen Europäischen Fahrzyklus	195
9 Zusammenfassung und Ausblick	199
Literaturverzeichnis	203