1st International Conference on Thermo-Mechanically Graded Materials

Hans-Peter Heim Dirk Biermann Jürgen Maier

1st International Conference on Thermo-Mechanically Graded Materials

Edited by

Prof. Hans-Peter Heim, University of Kassel Prof. Dirk Biermann, TU Dortmund University Prof. Hans Jürgen Maier, University of Paderborn

All rights reserved.

No part of this publication may be reproduced or transmitted by any means, electronic, mechanical, photocopying or otherwise without the prior permission of the publisher.

© 2012

Verlag Wissenschaftliche Scripten Kaiserstrasse 32, 08209 Auerbach, Germany info@verlag-wiss-scripten.de www.verlag-wiss-scripten.de

ISBN: 978-3-942267-58-8

Graded product properties based on microstructural material properties that have been selectively influenced on a local basis constitute the scientific focus of the 1st International Conference on Thermo-Mechanically Graded Materials which is being held in Kassel on 29 and 30 October 2012.

The scientific basis for this conference is provided by Collaborative Research Centre CRC/Transregio 30 on this same subject, which is being sponsored by the German Research Foundation (DFG) and has been running at the TU Dortmund, the University of Paderborn and the University of Kassel since summer 2006. Transregio 30 took up what was a new subject area back then and, in the meantime, the scientific study of the manufacture of functionally graded products has gratifyingly become established internationally in a wide range of scientific communities. It was thus time for an internationally-oriented conference to be launched on the basis of Transregio 30.

The very broad range of lecture topics might appear somewhat unusual at first sight: different materials such as steel, plastics and aluminium are covered, as are production engineering, materials technology and numerical control questions. Upon closer inspection, however, this is seen to be only logical. If, in future, we wish to efficiently implement the complex tasks that a product is called upon to fulfil with limited resources, it is essential to push back the current limits of production engineering and materials technology. And it goes without saying that the new technical solutions that result from this must be mapped out in virtual terms too so as to achieve predictable results for the process and product properties.

The scientists working on Transregio 30 are convinced that their interdisciplinary cooperation - namely the highly effective linking of production engineering, materials technology, material modelling and numerical control, transcending the individual material boundaries – will lead to new solutions for functionally designed materials for the future.

One key aspect here is practical relevance. It is not the aim to come up with special solutions for niche applications but rather with production processes that can be employed on an industrial scale for high-quality products with complex properties. This steps up the demands on the research work and explains why a pronounced interdisciplinary approach was selected right from the start.

We trust that this view of the situation is reflected in the papers at the conference in October 2012. The conference proceedings that you have before you contain manuscripts both from scientists in Transregio 30 and from other working groups that are active on an international basis. The close links with industry also become clear when you take a look at the conference programme: the chairpersons for the conference are almost all representatives of eminent companies – namely, potential future users of the research results.

We trust that you will enjoy reading these conference proceedings and will gain new insights from them.

Prof. Dr.-Ing. H.-P. Heim Spokesperson of CRC/TRR 30 University of Kassel Prof. Dr.-Ing. D. Biermann Site spokesman TU Dortmund University Prof. Dr.-Ing. H.J. Maier Site spokesman University of Paderborn

Table of Contents

A1	Adhesion and Tribological Behavior of Cr/CrAIN Multilayer Coatings on Thermally Sprayed Substrates for Hot Metal Forming
A2	Residual Stresses in Flange Shafts Produced by Thermo-Mechanical Metal Forming Operations
A3	Statistically Assisted Identification of the Material and Friction Parameters for Modeling Metal Cutting Processes Using the FEA
A4	Error Based Adaptive Galerkin Time Integration Schemes for Thermal Contact Phenomena
A5	Simulation of Transient Point Loading on Functionally Graded Materials37 Christina Völlmecke, B. Emek Abali, Maria Kashtalyan and Wolfgang H. Müller Technische Universität Berlin, Institute of Mechanics, Germany
A6	Numerical Investigations on the Flow Behavior of Steel in a Semi-solid State
A7	In-situ Characterization of Solid-to-Solid Phase Transformations in Steel by Digital Image Correlation

A8	Experimental Procedure for Monitoring the Damage Accumulation Process under Fatigue Loading in Thermo-Mechanically Treated Structures
	University of Kassel, Institute of Materials Engineering, Germany
A9	Interaction of the Crack Tip Field with the Microstructure in a Ferritic-Martensitic Steel
A10	Interaction, Modeling and Evaluation of Process Zones for Manufacturing Chains in Research Training Group 1483
A11	Surface- and Subsurface-Functionalization of Monolithic Metallic Materials by Thermo-Mechanical Processes
A12	Adaptive Fuzzy Logic Controller for the Production of Functionally Graded Materials with Tailored Microstructural Properties
A13	Evaluation of Preheating Strategies Improving the Mechanical Properties in Intermediate Areas of Functionally Graded Materials
A14	Consecutive and Simultaneous Coupling of Thermal and Deep Rolling Surface Treatments

A15	Coupling Algorithms for Small Strain Thermo-Viscoplasticity: Monolithic vs. Partitioned Approach	97
	Patrick Erbts ¹ , Steffen Rothe ² , Alexander Düster ¹ and Stefan Hartmann ² ¹ Hamburg University of Technology (TUHH),	<i>)</i>
	Numerical Analysis with Application in Ship Technology, Germany ² Clausthal University of Technology, Institute of Mechanics, Germany	
A16	Numerical Simulation of Thermal Fluid Structure Interaction using the Nonlinear Heat Equation	103
	Philipp Birken ¹ , Tobias Gleim ² , Detlef Kuhl ² und Andreas Meister ¹	
	¹ University of Kassel, Institute of Mathematics, Germany ² University of Kassel, Institute of Mechanics and Dynamics, Germany	
A17	Modelling and Simulation of Phase-Transformations and	
	Plasticity in Steel	109
	Richard Ostwald ¹ , Thorsten Bartel ¹ , Andreas Menzel ^{1,2} ,	
	Marcel Tiffe ³ , Dirk Biermann ³ , Markus Lebsanft ⁴ and Berthold Scholtes ⁴	
	TU Dortmund University, Institute of Mechanics, Germany	
	² Lund University, Division of Solid Mechanics, Sweden	
	 TU Dortmund University, Institute of Machining Technology, Germany University of Kassel, Institute of Materials Engineering – Metallic Materials, Germany 	any
A18	Friction-Spinning – A New Innovative Thermal Assisted	
	Incremental Forming Process for the Manufacture of	115
	Complex Functionally Graded Workpieces	115
	University of Paderborn, Chair of Forming and Machining Technology, Germany	
A19	LASER-Assisted Net-Shape Forming of a Miniature Gear Shaft	
	with Functionally Graded Properties	121
	Kai Hilgenberg ¹ , Adis Huskic ² , Gabriel Mienert ¹ and Kurt Steinhoff ¹	
	University of Kassel, Chair of Metal Forming Technology, Germany	
	² Leibniz Universität Hannover, IFUM, Germany	
A20	Experimental Investigations of Thermal Fluid-structure Interaction	127
	Sandra Carstens', Detlef Kuhl', Andreas Meister ³ and Olaf Wünsch ²	
	Institute of Mechanics and Dynamics, University of Kassel, Germany	
	² Institute of Mechanics, University of Kassel, Germany	
	³ Institute of Mathematics, University of Kassel, Germany	

1st International Conference on Thermo-Mechanically Graded Materials

	137
B2 Prediction of Dynamic Grain Structure Evolution during Hot Extrusion of EN AW-6082	
B3 Thermo Mechanically Processing of Age Hardenable Aluminium Alloys and Potential of Functional Graded Light Weight Components	143
B4 Modeling of Transient Thermal Conditions During Selective Melting of Thermoplastic Powder	149
B5 Tensile and Flexural Properties of Fused Deposition Modeling Parts Manufactured with Ultem*9085 Agnes Bagsik ^{1,2} , Volker Schöppner ² and Eric Klemp ¹ ¹ University of Paderborn, Polymer Engineering, Germany ² University of Paderborn, Direct Manufacturing Center, Germany	157
B6 Manufacturing of Functionally Gradient Materials by Using Weld-Deposition Makireddypalli Adinarayanappa Somashekara and Simhambhatla Suryakumar Indian Institute of Technology Hyderabad, Department of Mechanical Engineering, India	163
B7 Influence of a Fracture Mechanical Gradation on Crack Propagation	169

В8	Study on Impact Crushing Properties of High Strength Steel Sheets	175
B9	FEM Modeling of Hard Turning with Consideration of Phase Transformations Eckart Uhlmann², Rolf Mahnken¹, Ivan Mitkov Ivanov² and Chun Cheng¹ University of Paderborn, Chair of Technical Mechanics, Germany Technical University Berlin, Institute for Machine Tools and Factory Management, Germany	183
B10	Self-Reinforcement of Uniaxially Stretched Polycarbonate Film	189
B11	Computer-Aided Planning and Optimisation of Manufacturing Processes for Functional Graded Components	195
B12	Micromechanically Motivated Damage Model for Brittle Materials Under Thermal Shock	201
B13	An Induced Anisotropy Model for Polymers	207
B14	Parameter Identification of Adhesive Materials Using a Stochastic Model with Application to a T-Joint	213
B15	Efficient FEM Solvers for Incompressible Nonlinear Flow Models	219

1st International Conference on Thermo-Mechanically Graded Materials

B16	Comparison of Improved FE/FV Methods in the Context of
	Simulating Jet Extrusion Processes
	Ammar Al-Baldawi ¹ , Hogenrich Damanik ² , Stefan Turek ² and Olaf Wünsch ¹
	University of Kassel, Institute of Mechanics, Germany
	² TU Dortmund University, Institute of Applied Mathematics, Germany
B17	Thermo-Mechanically Graded Injection Moulded Microcellular Foams231
	Hans-Peter Heim ¹ , Andrzej K. Bledzki ^{1,2} , Martin Rohleder ¹ and Mike Tromm ¹
	¹ University of Kassel, Institute of Materials Engineering, Germany
	² Westpommeranian University of Technology, Szczecin, Poland
B18	Production of Structural Foams in the
	Injection Moulding Process with ProFoam241
	Christian Hopmann and Daniel Sander
	RWTH Aachen University, Institute of Plastics Processing, Germany
B19	Influence of the Process Conditions on the Morphology-Property-Relationship
	of Self-Reinforced PP-Composites
	Hans-Peter Heim, Björn Rohde and Angela Ries
	University of Kassel, Institute of Materials Engineering, Germany
B20	Evaluation of Nondestructive Methods for the Characterization
	Self-Reinforced Polypropylene Composites
	Norman Sievers ¹ , Wolfgang Tillmann ¹ , Christian Melchers ¹ ,
	Reiner Zielke ¹ , Angela Ries ² and Hans-Peter Heim ²
	¹ TU Dortmund University, Institute of Materials Engineering, Germany
	² University of Kassel, Institute of Materials Engineering, Germany